Environmental Profile

This LCA is calculated according to: ISO 14044, ISO 14040 and EN 15804

Ecochain

Product:	3069964 - Tegra 600 PP Bend 120° DN250 SW DK
Unit:	1Piece
Manufacturer:	Wavin Poland Buk
Address:	Dobieżýnska 43 64-320 Buk
	Poland Contact:
https://www.wavin.com/en-en	

LCA standard:
Standard database:
Externally verified:
Issue date:
End of validity:
Verifier:

EN15804+A2 (2019)
Worldwide - Ecoinvent v 3.6 Cut-Off
Yes
19-09-2022
19-09-2027
Martijn van Hövell - SGS Search

Plastic inspection chamber made of polypropylene according to DIN EN 13598-2.

The LCA background information and project dossier have been registered in the online Ecochain application in the account Wavin Poland Buk (2020). ($\mathbf{V}=\mathrm{module}$ declared, MND = module not declared).

A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	B6	B7	C1	C2	C3	C4	D
V	V	■	MND	V	V	『	■									
Product					Use stage							End-of-Lif				
A1 Raw material supply A2 Transport A3 Manufacturing Construction process stage					B1 Use B2 Maintenance B3 Repair B4 Replacement B5 Refurbishment B6 Operational energy use B7 Operational water use							C1 De-construction demolition C2 Transport C3 Waste processing C4 Disposal				
A4 Transport gate to site												Benefits and loads beyond the system boundaries				

A5 Assembly / Construction installation process
D Reuse- Recovery- Recycling- potential

Environmental impacts and parameters

Statement of Confidentiality
This document and supporting material contain confidential and proprietary business information of Wavin Poland Buk. These materials may be printed or (photo) copied or otherwise used only with the written consent of Wavin Poland Buk.

Results

	Environmental impact	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
GWP-total		kg CO2 eq	$3.86 \mathrm{E}+1$	$1.49 \mathrm{E}+0$	$1.86 \mathrm{E}+0$	$4.19 \mathrm{E}+1$	$7.34 \mathrm{E}-1$	$5.45 \mathrm{E}+1$	$3.58 \mathrm{E}-1$	-3.75E+1	$6.00 \mathrm{E}+1$
GWP-f		kg CO2 eq	$6.55 \mathrm{E}+1$	$1.48 \mathrm{E}+0$	$1.76 \mathrm{E}+0$	6.87E+1	$7.34 \mathrm{E}-1$	$2.74 \mathrm{E}+1$	$3.58 \mathrm{E}-1$	-3.74E+1	$5.99 \mathrm{E}+1$
GWP-b		kg CO 2 eq	-2.70E+1	6.85E-4	$9.71 \mathrm{E}-2$	$-2.69 \mathrm{E}+1$	4.46E-4	$2.71 \mathrm{E}+1$	3.15E-4	-1.13E-1	8.15E-2
GWP-luluc		kg CO2 eq	$3.54 \mathrm{E}-2$	$5.44 \mathrm{E}-4$	$6.33 \mathrm{E}-4$	$3.66 \mathrm{E}-2$	$2.60 \mathrm{E}-4$	$4.05 \mathrm{E}-3$	$6.20 \mathrm{E}-6$	-1.51E-2	$2.58 \mathrm{E}-2$
ODP		kg CFC11 eq	3.23E-6	3.28E-7	2.22E-7	$3.78 \mathrm{E}-6$	$1.69 \mathrm{E}-7$	5.54E-7	$9.04 \mathrm{E}-9$	-2.03E-6	$2.48 \mathrm{E}-6$
AP		$\mathrm{mol} \mathrm{H}^{\text {eq }}$ q	$2.65 \mathrm{E}-1$	8.61E-3	7.06E-3	2.80E-1	$4.18 \mathrm{E}-3$	$2.43 \mathrm{E}-2$	$2.17 \mathrm{E}-4$	-1.13E-1	$1.96 \mathrm{E}-1$
EP-fw		kg Peq	1.26E-3	1.50E-5	$3.45 \mathrm{E}-5$	1.30E-3	6.04E-6	$1.18 \mathrm{E}-4$	$2.84 \mathrm{E}-7$	-4.87E-4	$9.42 \mathrm{E}-4$
EP-m		kg Neq	$4.65 \mathrm{E}-2$	3.03E-3	$1.06 \mathrm{E}-3$	$5.06 \mathrm{E}-2$	$1.50 \mathrm{E}-3$	7.39E-3	$1.64 \mathrm{E}-4$	-2.20E-2	3.76E-2
EP-T		mol Neq	5.32E-1	$3.34 \mathrm{E}-2$	$1.16 \mathrm{E}-2$	$5.77 \mathrm{E}-1$	$1.65 \mathrm{E}-2$	$8.16 \mathrm{E}-2$	$8.78 \mathrm{E}-4$	-2.55E-1	4.21E-1
POCP		kg NMVOC eq	$2.30 \mathrm{E}-1$	$9.55 \mathrm{E}-3$	3.90E-3	$2.43 \mathrm{E}-1$	$4.71 \mathrm{E}-3$	$2.51 \mathrm{E}-2$	3.28E-4	-1.04E-1	$1.69 \mathrm{E}-1$
ADP-mm		kg Sb eq	3.43E-3	3.76E-5	6.87E-5	$3.53 \mathrm{E}-3$	1.90E-5	8.93E-5	$2.18 \mathrm{E}-7$	-3.42E-4	3.30E-3
ADP-f		MJ	$2.18 \mathrm{E}+3$	$2.24 \mathrm{E}+1$	$2.21 \mathrm{E}+1$	$2.22 \mathrm{E}+3$	$1.13 \mathrm{E}+1$	7.16E+1	$6.61 \mathrm{E}-1$	-1.11E+3	$1.20 \mathrm{E}+3$
WDP		m3 depriv.	4.40E+1	8.01E-2	2.20E-1	$4.43 \mathrm{E}+1$	$3.46 \mathrm{E}-2$	$1.44 \mathrm{E}+0$	3.44E-3	-1.90E+1	$2.68 \mathrm{E}+1$
PM		disease inc.	3.16E-6	$1.33 \mathrm{E}-7$	5.19E-8	$3.35 \mathrm{E}-6$	6.62E-8	$3.79 \mathrm{E}-7$	$4.54 \mathrm{E}-9$	-1.13E-6	$2.67 \mathrm{E}-6$
IR		kBq U-235 eq	$1.83 \mathrm{E}+0$	$9.38 \mathrm{E}-2$	$3.46 \mathrm{E}-2$	$1.96 \mathrm{E}+0$	$4.92 \mathrm{E}-2$	$2.18 \mathrm{E}-1$	3.07E-3	-6.27E-1	$1.60 \mathrm{E}+0$
ETP-fw		cTUe	$5.81 \mathrm{E}+2$	$2.00 \mathrm{E}+1$	4.82E+1	$6.49 \mathrm{E}+2$	$9.15 \mathrm{E}+0$	9.03E+1	$6.23 \mathrm{E}-1$	-2.47E+2	$5.02 \mathrm{E}+2$
HTP-c		ctun	$2.84 \mathrm{E}-8$	6.47E-10	$2.40 \mathrm{E}-9$	$3.14 \mathrm{E}-8$	3.25E-10	1.07E-8	$1.64 \mathrm{E}-11$	-1.15E-8	$3.09 \mathrm{E}-8$
HTP-nc		cTun	$5.66 \mathrm{E}-7$	$2.18 \mathrm{E}-8$	$5.79 \mathrm{E}-8$	$6.46 \mathrm{E}-7$	$1.09 \mathrm{E}-8$	1.25E-7	$3.74 \mathrm{E}-10$	-2.30E-7	5.52E-7
SQP		Pt	$2.48 \mathrm{E}+3$	$1.94 \mathrm{E}+1$	$9.36 \mathrm{E}+0$	$2.51 \mathrm{E}+3$	9.64E+0	5.67E+1	1.69E+0	$-1.23 \mathrm{E}+3$	$1.34 \mathrm{E}+3$
	Resource use	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
PERE		MJ	4.31E+2	$2.80 \mathrm{E}-1$	$8.16 \mathrm{E}+1$	$5.13 \mathrm{E}+2$	$1.62 \mathrm{E}-1$	$3.50 \mathrm{E}+0$	2.59E-2	-2.07E+2	3.09E+2
PERM		MJ	0	0	0	0	0	0	0	0	0
PERT		MJ	$4.31 \mathrm{E}+2$	$2.80 \mathrm{E}-1$	$8.16 \mathrm{E}+1$	$5.13 \mathrm{E}+2$	$1.62 \mathrm{E}-1$	$3.50 \mathrm{E}+0$	$2.59 \mathrm{E}-2$	-2.07E+2	$3.09 \mathrm{E}+2$
PENRE		MJ	$2.34 \mathrm{E}+3$	$2.38 \mathrm{E}+1$	$2.40 \mathrm{E}+1$	$2.38 \mathrm{E}+3$	$1.20 \mathrm{E}+1$	7.63E+1	7.01E-1	$-1.19 \mathrm{E}+3$	$1.28 \mathrm{E}+3$
PENRM		MJ	0	0	0	0	0	0	0	0	0
PENRT		MJ	$2.34 \mathrm{E}+3$	$2.38 \mathrm{E}+1$	$2.40 \mathrm{E}+1$	$2.38 \mathrm{E}+3$	$1.20 \mathrm{E}+1$	7.63E+1	7.01E-1	$-1.19 \mathrm{E}+3$	$1.28 \mathrm{E}+3$
PET		MJ	$2.77 \mathrm{E}+3$	$2.40 \mathrm{E}+1$	$1.06 \mathrm{E}+2$	$2.90 \mathrm{E}+3$	$1.21 \mathrm{E}+1$	7.98E+1	7.27E-1	$-1.40 \mathrm{E}+3$	$1.59 \mathrm{E}+3$
SM		kg	0	0	0	0	0	0	0	0	0
RSF		MJ	0	0	0	0	0	0	0	0	0
NRSF		MJ	0	0	0	0	0	0	0	0	0
FW		m3	7.38E-1	$2.73 \mathrm{E}-3$	$6.28 \mathrm{E}-3$	7.47E-1	1.27E-3	5.02E-2	8.15E-4	-2.93E-1	5.06E-1

	Output flows and waste categories	Unit	A1	A2	A3	A1-A3	C2	C3	C4	D	Total
HWD		kg	$5.34 \mathrm{E}-4$	5.67E-5	$2.66 \mathrm{E}-5$	$6.18 \mathrm{E}-4$	$2.88 \mathrm{E}-5$	1.22E-4	7.97E-7	-3.83E-4	3.86E-4
NHWD		kg	4.02E+0	1.42E+0	6.93E-2	$5.51 \mathrm{E}+0$	6.98E-1	3.84E+0	2.91E+0	-1.48E+0	$1.15 \mathrm{E}+1$
RWD		kg	1.93E-3	1.47E-4	4.89E-5	2.13E-3	7.66E-5	$2.77 \mathrm{E}-4$	4.32E-6	-6.07E-4	1.88E-3
CRU		kg	0	0	0	0	0	0	0	0	0
MFR		kg	0	0	0	0	0	0	0	0	0
MER		kg	0	0	0	0	0	0	0	0	0
EE		MJ	0	0	0	0	0	0	0	0	0
EET		MJ	0	0	0	0	0	0	0	0	0
EEE		MJ	0	0	0	0	0	0	0	0	0

Ecochain

Ecochain Technologies BV
H.J.E. Wenckebachweg 123, 1096 AM Amsterdam, The Netherlands
https://www.ecochain.com
+31203035777

